
Make Deep Networks Shallow Again

Bernhard Bermeitinger, Tomas Hrycej, and Siegfried Handschuh

Institute of Computer Science, University of St.Gallen (HSG),
St.Gallen, Switzerland

15 Sep 2023

Abstract

Deep neural networks have a good success
record and are thus viewed as the best archi-
tecture choice for complex applications. Their
main shortcoming has been, for a long time,
the vanishing gradient which prevented the nu-
merical optimization algorithms from accept-
able convergence. An important special case
of network architecture, frequently used in
computer vision applications, consists of us-
ing a stack of layers of the same dimension.
For this architecture, a breakthrough has been
achieved by the concept of residual connec-
tions—an identity mapping parallel to a con-
ventional layer. This concept substantially al-
leviates the vanishing gradient problem and is
thus widely used. The focus of this paper is
to show the possibility of substituting the deep
stack of residual layers with a shallow archi-
tecture with comparable expressive power and
similarly good convergence properties. A stack
of residual layers can be expressed as an ex-
pansion of terms similar to the Taylor expan-
sion. This expansion suggests the possibility of
truncating the higher-order terms and receiv-
ing an architecture consisting of a single broad
layer composed of all initially stacked layers

in parallel. In other words, a sequential deep
architecture is substituted by a parallel shal-
low one. Prompted by this theory, we investi-
gated the performance capabilities of the paral-
lel architecture in comparison to the sequential
one. The computer vision datasets MNIST and
CIFAR10 were used to train both architectures
for a total of 6,912 combinations of varying
numbers of convolutional layers, numbers of
filters, kernel sizes, and other meta parameters.
Our findings demonstrate a surprising equiva-
lence between the deep (sequential) and shal-
low (parallel) architectures. Both layouts pro-
duced similar results in terms of training and
validation set loss. This discovery implies that
a wide, shallow architecture can potentially re-
place a deep network without sacrificing per-
formance. Such substitution has the potential
to simplify network architectures, improve op-
timization efficiency, and accelerate the train-
ing process.

1 Introduction

Deep neural networks (i.e., networks with
many nonlinear layers) are widely considered
to be the most appropriate architecture for
mapping complex dependencies such as those

1



arising in Artificial Intelligence tasks. Their
potential to map intricate dependencies has ad-
vanced their widespread use.

For example, the study (Meir et al., 2023)
compares the first deep convolutional net-
work for image classification with two se-
quential convolutional layers LeNet (LeCun
et al., 1989) to its deeper evolution VGG16 (Si-
monyan and Zisserman, 2015) with 13 se-
quential convolutional layers. While the per-
formance gain in this comparison was sig-
nificant, further increasing the depth resulted
in very small performance gains. Adding
three additional convolutional layers to VGG16
improved the validation error slightly from
25.6 % to 25.5 % on the ILSVRC-2014 compe-
tition dataset (Russakovsky et al., 2015) while
increasing the number of trainable parameters
from 138M to 144M.

However, training these networks remains a
significant challenge, often navigated through
numerical optimization methods based on the
gradient of the loss function. In deeper net-
works, the gradient can significantly dimin-
ish particularly for parameters distant from the
output, leading to the well-documented issue
known as the “vanishing gradient”.

A breakthrough in this challenge is the con-
cept of residual connections: using an identity
function parallel to a layer (He et al., 2016).
Each residual layer consists of an identity map-
ping copying the layer’s input to its output and
a conventional weighted layer with a nonlinear
activation function. This weighted layer rep-
resents the residue after applying the identity.
The output of the identity and the weighted
layer are summed together, forming the out-
put of the residual layer. The identity function
plays the role of a bridge—or “highway” (Sri-
vastava et al., 2015)—transferring the gradient
w.r.t. layer output into that of the input with
unmodified size. In this way, it increases the
gradient of layers remote from the output.

The possibility of effectively training deep

networks led to the widespread use of
such residual networks and to the belief
that this is the most appropriate architec-
ture type (Mhaskar et al., 2017). How-
ever, extremely deep networks such as
ResNet-1000 with ten times more layers than
ResNet-101 (He et al., 2016) often demonstrate
a performance decline.

Although there have been suggestions for
wide architectures like EfficientNet (Tan and
Le, 2019), these are still considered “deep”
within the scope of this paper.

This paper questions the assumption that
deep networks are inherently superior, partic-
ularly considering the persistent gradient prob-
lems. Success with methods like residual con-
nections can be mistakenly perceived as val-
idation of the superiority of deep networks,
possibly hindering exploration into potentially
equivalent or even better-performing “shallow”
architectures.

To avoid such premature conclusions, we
examine in this paper the relative performance
of deep networks over shallow ones, focusing
on a parallel or “shallow” architecture instead
of a sequential or “deep” one. The basis of the
investigation is the mathematical decomposi-
tion of the mapping materialized by a stack of
convolutional residual networks into a struc-
ture that suggests the possibility of being ap-
proximated by a shallow architecture. By ex-
ploring this possibility, we aim to stimulate
further research, opening new avenues for AI
architecture exploration and performance im-
provement.

2 Decomposition of stacked
residual connections

A layer of a conventional multilayer percep-
tron can be thought of as a mapping y = Fh (x).
With the residual connection concept (He et al.,

2



2016), this mapping is modified to

y = Ix+Fh (x) (1)

For the h-th hidden layer, the recursive rela-
tionship is

zh = Izh−1 +Fh (zh−1) (2)

For example, the second and the third layers
can be expanded to

z2 = Iz1 +F2 (z1) (3)

and

z3 = Iz2 +F3 (z2)

= I (Iz1 +F2 (z1))+F3 (Iz1 +F2 (z1))

= Iz1 +F2 (z1)+F3 (Iz1 +F2 (z1))

(4)

In the operator notation, it is

zh = zh−1 +Fh ∗ zh−1 = (I +Fh)∗ zh−1 (5)

For linear operators, the recursion up to the
final output vector y can be explicitly ex-
panded (Hrycej et al., 2023, Section 6.7.3.1)

y = I ∗ x+
H

∑
h=1

Fh ∗ x+
H

∑
h=1

H

∑
k=1,k>h

Fk ∗Fh ∗ x · · ·

(6)
with all combinations of operator triples,
quadruples, etc. up to the product of all H layer
operators.

Typically, these layer mappings are not lin-
ear due to their activation functions such as sig-
moid, tanh, or ReLU. As a result, it does not
satisfy the condition Fh (x+ z)=Fh (x)+Fh (z).
However, their gradient is a linear operator. In
a multilayer perceptron with a residual connec-
tion, the error gradient w.r.t. the output of the
h-th layer is

∂E
∂zh

=

(
H

∏
k=h+1

∂zk

∂zk−1

)
∂E
∂zH

=

(
H

∏
k=h+1

(
I +W T

k ∇Fk
)) ∂E

∂zH

(7)

The error gradient w.r.t. the weights is, for both
standard layers and those with residual connec-
tion

∂E
∂Wh

= ∇Fh
∂E
∂zh

zT
h−1 (8)

and w.r.t. biases

∂E
∂bh

= ∇Fh
∂E
∂zh

(9)

This shows that the expansion given
in Eq. (6) is valid for an approximation lin-
earized with the help of the local gradient. In
particular, it is valid around the minimum.

In an analogy to Taylor expansion, it can be
hypothesized that the first two terms

y = I ∗ x+
H

∑
h=1

Fh ∗ x (10)

may be a reasonable approximation of the
whole mapping in Eq. (6).

In terms of implementation as neural net-
works, the stack of layers with residual con-
nections (as exemplified in Fig. 1) could be ap-
proximated by the parallel architecture such as
that illustrated in Fig. 2.

Of course, this hypothesis has to be con-
firmed by tests on real-world problems. If ac-
ceptable, it would be possible to substitute a
deep residual network of H sequential layers
with a “shallow” network with a single layer
consisting of H individual modules in parallel,
summing their output vectors. Each of these
modules would be equivalent to one layer in
the deep architecture. The main objective is not
to prove that both networks are nearly equiv-
alent with the same parameter set, as this is
unlikely to be the case. Rather, the goal is to
demonstrate that both shallow and deep archi-
tectures can effectively learn and attain compa-
rable performances on the given task. The con-
sequence would be that the shallow architec-
ture can perform as well as the deep one, with
the same number of parameters. This may be

3



Input image

Linear Projection to 32×32×8
Resize to 32×32

Conv A

+

Conv B

+

Conv C

+

Conv D

+

Classification
Flatten

Outputs

Figure 1: Overview of the sequential architec-
ture with four consecutive convolu-
tional layers with eight filters each
and their skip connections.

Input image

Linear Projection to 32×32×8
Resize to 32×32

Conv C Conv DConv BConv A

+

Classification
Flatten

Outputs

Figure 2: Overview of the parallelized archi-
tecture of Fig. 1 with four convolu-
tional layers with eight filters each
and one skip connection.

relevant for the preferences in setting up neu-
ral networks for particular tasks since shallow
networks suffer less from numerical computing
problems such as vanishing gradient.

3 Setup of computing
experiments

The analysis of Section 2 suggests that the ex-
pressive power of a network architecture in
which stacked residual connection layers of a
deep network are reorganized into a parallel
operation in a single, broad layer, may be close
to that of the original deep network. This hy-
pothesis is to be tested on practically relevant
examples.

It is important to point out that residual con-
nection layers are restricted to partial stacks of
equally sized layers (otherwise the unity map-
ping could not be implemented). A typical use
of such networks is image classification where
an image is processed by consecutive layers of
size equal to the (possibly reduced) pixel ma-
trix. The output of this network is usually a

4



vector of class probabilities that differ in di-
mensionality from that of the input image. This
is the reason for one or more non-residual lay-
ers at the output and some preprocessing non-
residual layers at the input.

Residual connections can be used for any
stack of layers of the same dimensions. How-
ever, the layers in domains such as image pro-
cessing are mostly of the convolutional type.
This is a layer concept in which the same, rel-
atively small weight matrix, is applied to the
neighbor environment of every position in the
input. They are implementing a local operator
(such as edge detection) shifted over the exten-
sion of the image. The following benchmark
applications use convolutional layers.

Filters are a concept in convolutional layers
that consist of a multiplicity of such convolu-
tion operators. Each filter convolves individ-
ually with the input matrix for generating the
output. Multiple filters in a layer operate in-
dependently from each other, building a paral-
lel structure. The computing experiments re-
ported here were done both with and without
multiple filters. The possibility of making the
consecutive layer stack parallel concerns only
the middle part with residual connections of
identically sized layers.

For the experiments, the two well-known
image classification datasets MNIST (Le-
Cun et al., 1998) and CIFAR10 (Krizhevsky,
2009) were used. MNIST contains black
and white images of handwritten digits (0–9)
while CIFAR10 contains color images of ex-
clusively ten different mundane objects like
“horse”, “ship”, or “dog”. They contain 60,000
(MNIST) and 50,000 (CIFAR10) training ex-
amples. Their respective preconfigured test
split of each 10,000 examples are used as val-
idation sets. While CIFAR10 is evenly dis-
tributed among all classes, MNIST is roughly
evenly distributed with a standard deviation of
322 for the training set and 59 for the valida-
tion set. We took no special treatment for this

slight class imbalance.
A series of computing experiments of all the

following possible architectures were run:

• Number of convolutional layers: 1, 2, 4,
8, 16, 32

• Number of filters per convolutional layer:
1, 2, 4, 8, 16, 32

• Kernel size of a filter: 1×1, 2×2, 4×4,
6×6, 8×8, 16×16

• Activation function of each convolutional
layer: sigmoid, ReLU

Figure 1 shows the sequential architecture
with depth 4 and 8 filters per convolutional
layer. For comparison, the parallelized version
is shown in Fig. 2. The sizes of the filters’ ker-
nels are not shown because they don’t interfere
with the layout.

The images are resized to 32× 32 pixels to
match the varying kernel sizes. For the sum-
mation of the skip connection and the convo-
lutional layer to work out, they need to have
the same dimensionality. Therefore, for pre-
processing, the images are linearly mapped to
match the convolutional layers’ output dimen-
sions. To keep the architecture simple and re-
duce the possibility of additional side effects,
the input is flattened into a one-dimensional
vector before the dense classification layer
with ten linear output units. These linear layers
are initialized with the same set of fixed ran-
dom values throughout all experiments.

The same configuration setup was used for
the number of parallel filters per layer. Par-
allel filters are popular means of extending
a straightforward convolution layer architec-
ture: instead of each layer being a single
convolution of the previous layer, it consists
of multiple convolution filters in parallel. In
all well-performing image classifiers based
on convolutional layers, multiple filters are

5



used (Fukushima, 1980; Krizhevsky et al.,
2012; Simonyan and Zisserman, 2015).

Throughout all experiments, the parameters
of the layers at the same depths were always
initialized with the same random values with a
fixed seed. For example, the two layers labeled
A in Figs. 1 and 2 started their training from the
same parameter set.

The categorical cross-entropy loss was em-
ployed as the loss function due to its suit-
ability for multi-class classification problems.
This loss served also as the main assessment of
the training performance. While metrics like
classification accuracy are more intuitive from
an application point of view, it’s important to
align the assessment with the loss function be-
ing optimized. The convergence of the opti-
mization process can only be measured with
the help of the minimized loss function. Al-
though other metrics are valuable in the con-
text of the application, they may not exhibit
a direct monotonic relationship with the loss
function, making them less suitable for com-
paring learning convergence, especially when
both compared architectures share identical pa-
rameter sets. Thus, our choice of using cross-
entropy loss as the performance metric is justi-
fied.

The datasets were not shuffled between
epochs or experiments, leading to identical
batches throughout all experiment runs.

As the optimizer, RMSprop (Hinton, 2012)
was chosen with a fixed learning rate through-
out all steps with a batch size of 512. All exper-
iments were duplicated for the learning rates
10−2, 10−3, 10−4, and 10−5. Different learning
rates had only a marginal effect on the results,
the we only report the results obtained with a
learning rate of 10−4.

Each experiment ran for 100 epochs, which
resulted in 11,800 optimization steps for
MNIST, and 9,800 steps for CIFAR10. The
6,912 experiments were run individually on
NVIDIA Tesla V100 GPUs for a total run time

of 79 days. The results are reported for the
kernel size 16 × 16 which showed the best av-
erage classification performance although not
significantly different.

4 Computing experiments

4.1 With a single filter

The losses after the 100 epochs for the train-
ing set (T) and the validation set (V) are given
in Fig. 3. The performance of both architec-
tures can be observed by the points on the
green (sequential architecture) and red (paral-
lel variant) points. The solid lines represent the
training loss and the dashed lines the validation
loss.

Due to their identical layout and equal ran-
dom initialization, training the two networks
with one convolutional layer and one filter each
resulted consequently in equal loss values.

It can be observed that both architectures
perform similarly, in particular for the largest
depths of 16 and 32. For MNIST, the shal-
low, parallel architecture slightly outperforms
the original, sequential one, while the relation-
ship is inverse for the CIFAR10 dataset.

4.2 With multiple filters

A single-filter architecture is the most transpar-
ent one but it is scarcely used. It is mostly as-
sumed that more filters are necessary to reach
the desired classification performance. There-
fore, experiments with multiple (1 to 32) filters
per convolutional layer are included.

Same as before, the results after training
for 100 epochs are shown in Figs. 4a and 4b.
They show an interesting development for
CIFAR10: the training loss decreases by rais-
ing the number of filters while the validation
loss largely increases for more than four fil-
ters. The validation loss considerably deteri-
orates for the sequential architecture. (The re-

6



1 2 4 8 16 32

0.06

0.08

0.10

0.12

Number of convolutional layers

L
os

s
sequential T
parallel T
sequential V
parallel V

(a) MNIST

1 2 4 8 16 32

1.70

1.80

Number of convolutional layers

L
os

s

sequential T
parallel T
sequential V
parallel V

(b) CIFAR10

Figure 3: Sequential vs. parallel architecture: loss dependence on the number of residual con-
volutional layers (with a single filter per layer) for the two datasets MNIST (left) and
CIFAR10 (right)

sults for MNIST are similar for the training set
but less interpretable for the validation set.)

The reason for the distinct picture on
CIFAR10 is to be sought in relationships be-
tween constraints imposed by the task and the
number of free trainable parameters (Hrycej
et al., 2023, Chapter 4). A task with K =
50,000 training examples constitutes equally
many constraints (resulting from the goal to ac-
curately match the target values) for each out-
put value. For 10 classes, there are M = 10
such output values whose reference values are
to be correctly predicted by the classifier. This
creates KM constraints (here: 50,000× 10 =
500,000). For the mapping represented by the
network, there are P free (i.e., mutually inde-
pendent) parameters to make the mapping sat-
isfy the constraints.

• With P = KM, the system is perfectly de-
termined and could be solved exactly.

• With P > KM, the system is underdeter-
mined. A part of the parameters is set
to arbitrary values so that novel examples

from the validation set receive arbitrary
predictions.

• With P < KM, the system is overdeter-
mined, and not all constraints can be sat-
isfied. This may be useful if the data are
noisy, as it is not desirable to fit to noise.

An appropriate characteristic is the overde-
termination ratio Q from (Hrycej et al., 2022)
defined as

Q =
KM
P

(11)

The number of genuinely free parameters is
difficult to figure out. It can only be approxi-
mated by the total number of parameters, keep-
ing in mind that the number of actually free pa-
rameters can be lower.

In training a model by fitting to data, the
presence of the noise has to be considered. The
model should reflect the underlying genuine
laws in the data but not the noise. Fitting to
the latter is undesirable and is the substance of
the well-known phenomenon of overfitting. It
was shown in (Hrycej et al., 2023, Chapter 4)

7



1 2 4 8 16 32

0.00

0.05

0.10

Number of Filters

L
os

s

sequential T
parallel T
sequential V
parallel V

(a) MNIST

1 2 4 8 16 32

0.00

2.00

4.00

Number of Filters

L
os

s

sequential T
parallel T
sequential V
parallel V

(b) CIFAR10

Figure 4: Sequential vs. parallel architecture:
loss dependence on the number of
filters (with 16 convolutional layers)
for the two datasets MNIST (top) and
CIFAR10 (bottom)

Table 1: Overdetermination ratios for both
datasets and different model sizes
based on the number of filters for each
of the 16 convolutional layers

Overdetermination ratio Q
#filters #parameters MNIST CIFAR10

1 14k 41.771 34.804
2 37k 16.256 13.545
4 106k 5.630 4.691
8 344k 1.743 1.453

16 1.2M 0.495 0.412
32 4.5M 0.132 0.110

that fitting to the additive noise and thus the in-
fluence of training set noise to the model pre-
diction is reduced to the fraction 1/Q. In other
words, it is useful to keep the overdetermina-
tion ratio Q significantly over 1.

This supplementary information for the plot-
ted variants is given in Table 1. Acceptable
values of the overdetermination ratio Q are
given with filter counts of 1, 2, and 4. This is
consistent with the finding that overfitting did
not take place in single-filter architectures pre-
sented in Section 4.1.

For 8 filters or more, Q is close to 1 or even
below it. In this group, the validation loss can
grow arbitrarily although the training loss is re-
duced. This is the result of arbitrarily assigned
values of underdetermined parameters.

Altogether, the parallel architecture shows
better performance on the validation set de-
spite the slightly inferior loss on the training
set. This can be attributed rather to the random
effects of underdetermined parameters than to
the superiority of one or other architecture. In
this sense, both architectures can be viewed as
approximately equivalent concerning their rep-
resentational capacity.

8



4.3 Trade-off of the number of filters
and the number of layers

As an additional view to the relationship be-
tween the depth and the width of the network,
a group of experiments is analyzed in which
the product of the number of filters (F) and
the number of convolution layers (C) are kept
constant. In this way, also “intermediary” ar-
chitectures between deep and shallow ones are
captured. For example, an architecture with 32
filters and a single convolutional layer has a ra-
tio of 1/32 while the ratio with one filter and 32
layers is 32/1. For 16 layers with each 8 filters,
it is 16/8 = 2.

For the product of 32, there are the following
combinations of C×F : 1× 32, 2× 16, 4× 8,
8× 4, 16× 2 and 32× 1. In Fig. 5, they are
ordered along their depth-width ratio C/F: 1/32,
2/16, 4/8, 8/4, 16/2, and 32/1. These architectures
are represented by the green curves.

As a reference, the red curve shows their
shallow counterparts. Those are all single-
layer architectures. They differ only in the
number of parameters, consistent with their se-
quential counterparts represented by the green
curve. The difference in the number of param-
eters is due to the different sizes of the classifi-
cation layer following the residual connection
sequence. This classification layer is broader
for more filters as its input is larger the more
filters there are.

Both the training and validation losses in-
crease with the depth-width ratio, indicating
the superiority of the shallow architectures.
However, it is important to note that this com-
parison may not be completely fair due to
the inherent difference in parameter numbers.
Specifically, variants with higher depth-width
ratios have a diminishing number of parame-
ters resulting from their smaller number of fil-
ters.

In Figs. 5a and 5b, it can be observed that
the training loss for flattened alternatives is

slightly larger compared to the other architec-
tures. However, the validation loss for flattened
alternatives is smaller, albeit to a moderate ex-
tent.

In summary, the deep variants can certainly
not be viewed as superior in overall terms.
Both architectures are roughly equivalent, as
long as the number of parameters is equal.

5 Statistics of experiments

In addition to experiment runs selected for the
presentation in the previous sections, statistics
over all 6,912 runs, partitioned into some cat-
egories, may be useful to complete the perfor-
mance picture. Of course, averaging hundreds
to thousands of experiments does not guaran-
tee to reflect all theoretical expectations suc-
cinctly; it can only confirm rough trends.

This statistical summary is presented in Ta-
ble 2. The losses for training and validation as
well as for sequential and parallel architectures
are partitioned into intervals of overdetermina-
tion ratio to show the different behavior.

According to the theory, with a growing
overdetermination ratio, the discrepancy be-
tween training and validation loss becomes
smaller. On the other hand, larger overdeter-
mination ratios imply smaller numbers of free
network parameters. Sometimes, this leads
to increased losses from the diminished repre-
sentation capacity of the network. For ratios
smaller than 1, the validation loss may arbitrar-
ily grow because of underdetermined param-
eters fitted to training data noise (overfitting).
This arbitrary growth may be more or less ar-
ticulated, depending mostly on random factors.
However, there is always a considerable risk of
such poor generalization.

As observed in the individual experiments
presented, small discrepancies between train-
ing and validation loss are reached for overde-
termination ratios larger than 3 for CIFAR10

9



Table 2: Mean training and validation loss for sequential and parallel architectures and various
determination ratios Q intervals

Q ∈ [0,1) Q ∈ [1,3) Q ∈ [3,10) Q ∈ [10,∞)
train val train val train val train val

MNIST
sequential 0.00013 0.05201 0.01702 0.12449 0.03620 0.11743 0.11246 0.13550
parallel 0.00009 0.07551 0.02679 0.11468 0.05238 0.11467 0.13310 0.14900

CIFAR10
sequential 0.25326 2.03107 0.72510 1.31691 1.07333 1.34721 1.58608 1.65354
parallel 0.52658 1.32386 0.88701 1.24884 1.17085 1.34227 1.63449 1.68879

and larger than 10 for MNIST. These small
discrepancies testify to good generalization ca-
pability, expected for large overdetermination
ratios.

With Q < 1, the validation loss deteriorates
for CIFAR10 data if compared with the Q of
the higher interval. This is the effect of arbi-
trary parameter values caused by underdeter-
mination.

To summarize, there is a slight advance of
shallow architectures for the validation set (five
out of eight categories), and deep architectures
are better on the training set. The training and
validation losses are mostly closer together for
the parallel architecture.

6 Conclusion

It is stated in Section 2 that a deep residual
connection network can be approximately ex-
panded into a sum of shorter (i.e., less deep)
sequences of different orders. Truncating the
expansion to the first two terms results in a
shallow architecture with a single layer. This
suggests a hypothesis that the representational
capacity of such a shallow architecture may be
roughly as large as that of the original deep ar-
chitecture. If validated, this hypothesis could
open avenues to bypass issues typically associ-
ated with deep architectures.

Subsequent computational experiments con-
ducted on two widely recognized image classi-
fication tasks, MNIST and CIFAR10, seem to
confirm this theoretically founded expectation.
The performance of both architectures (in con-
figurations with identical numbers of network
parameters) is close to each other, with a slight
advance of shallow architectures in terms of
loss on the validation set.

While the deep architecture performed
marginally better on the training set, the cause
of its underperformance on the validation set
remains an open question. It is plausible that
the deep architecture’s ability to capture abrupt
nonlinearities may also make it prone to over-
fitting to noise. In contrast, the shallow net-
work, due to its inherent smoothness, might
exhibit a higher tolerance towards training set
noise.

In conclusion, our results suggest a potential
parity in the performance of deep and shallow
architectures. It is important to note that the
optimization algorithm utilized in this study is
a first-order one, which lacks guaranteed con-
vergence properties. Future research could ex-
plore the application of more robust second-
order algorithms, which, while not commonly
implemented in prevalent software packages,
could yield more pronounced results. This
work serves as a preliminary step towards

10



1/32 2/16 4/8 8/4 16/2 32/1

0.00

0.05

0.10

0.15

#layers/#filters

L
os

s

sequential T parallel T
sequential V parallel V

(a) MNIST

1/32 2/16 4/8 8/4 16/2 32/1
0.50

1.00

1.50

2.00

#layers/#filters

L
os

s

sequential T parallel T
sequential V parallel V

(b) CIFAR10

Figure 5: Sequential vs. parallel architecture:
loss dependence on the ratio of the
numbers of layers and filters (product
of the number of layers and the num-
ber of filters is fixed at 32) for the two
datasets MNIST (top) and CIFAR10
(bottom)

reevaluating architectural decisions in the field
of neural networks, urging further exploration
into the comparative efficacy of shallow and
deep architectures.

References

Fukushima, K. (1980). Neocognitron: A self-
organizing neural network model for a mech-
anism of pattern recognition unaffected by
shift in position. Biological Cybernetics,
36(4):193–202.

He, K., Zhang, X., Ren, S., and Sun, J. (2016).
Deep Residual Learning for Image Recog-
nition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR),
pages 770–778, Las Vegas, NV, USA. IEEE.

Hinton, G. (2012). Neural Networks for Machine
Learning.

Hrycej, T., Bermeitinger, B., Cetto, M., and Hand-
schuh, S. (2023). Mathematical Foundations
of Data Science. Texts in Computer Science.
Springer International Publishing, Cham.

Hrycej, T., Bermeitinger, B., and Handschuh, S.
(2022). Number of Attention Heads vs. Num-
ber of Transformer-encoders in Computer Vi-
sion. In Proceedings of the 14th Interna-
tional Joint Conference on Knowledge Dis-
covery, Knowledge Engineering and Knowl-
edge Management, pages 315–321, Valletta,
Malta. SCITEPRESS.

Krizhevsky, A. (2009). Learning Multiple Layers
of Features from Tiny Images. Dataset, Uni-
versity of Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. E.
(2012). ImageNet Classification with Deep
Convolutional Neural Networks. In Advances
in Neural Information Processing Systems,
volume 25. Curran Associates, Inc.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W., and Jackel, L. D.
(1989). Backpropagation Applied to Hand-
written Zip Code Recognition. Neural Com-
putation, 1(4):541–551.

11



LeCun, Y., Bottou, L., Bengio, Y., and Haffner,
P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the
IEEE, 86(11):2278–2324.

Meir, Y., Tevet, O., Tzach, Y., Hodassman, S.,
Gross, R. D., and Kanter, I. (2023). Ef-
ficient shallow learning as an alternative to
deep learning. Scientific Reports, 13(1):5423.

Mhaskar, H., Liao, Q., and Poggio, T. (2017).
When and Why Are Deep Networks Better
Than Shallow Ones? Proceedings of the AAAI
Conference on Artificial Intelligence, 31(1).

Russakovsky, O., Deng, J., Su, H., Krause, J.,
Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C.,
and Fei-Fei, L. (2015). ImageNet Large Scale
Visual Recognition Challenge. International
Journal of Computer Vision, 115(3):211–252.

Simonyan, K. and Zisserman, A. (2015). Very Deep
Convolutional Networks for Large-Scale Im-
age Recognition.

Srivastava, R. K., Greff, K., and Schmidhuber, J.
(2015). Training very deep networks. In Ad-
vances in Neural Information Processing Sys-
tems. Curran Associates, Inc.

Tan, M. and Le, Q. (2019). EfficientNet: Re-
thinking model scaling for convolutional neu-
ral networks. In Chaudhuri, K. and Salakhut-
dinov, R., editors, Proceedings of the 36th In-
ternational Conference on Machine Learning,
volume 97 of Proceedings of Machine Learn-
ing Research, pages 6105–6114. PMLR.

12


	Introduction
	Decomposition of stacked residual connections
	Setup of computing experiments
	Computing experiments
	With a single filter
	With multiple filters
	Trade-off of the number of filters and the number of layers

	Statistics of experiments
	Conclusion

